

# Mason

## Comparing TETRA with other Technologies

Presentation to TETRA Experience 2006 Dubai

Duncan Swan, 27<sup>th</sup> November 2006



- 1. Introduction
- 2. So many mobile radio technologies....
- 3. ETSI trunked radio standards
- 4. TETRA working with other radio technologies
- 5. A comparative look at TETRA and P25
- 6. Summary



#### So you want a PMR system ?

- Analogue Conventional and Trunked
  - FM Conventional, MPT1327 systems, LTR Logic Trunked Radio, EDACS (Ericsson), Smartzone (Motorola)
- Digital Conventional
  - DMR (Tier I and II), Project 25
- Digital Trunked
  - DMR (Tier III), OpenSky, Project 25, TETRA, Tetrapol
- Digital Cellular and Variants
  - CDMA-PAMR, GSM-ASCI, GSM-R, iDEN

There is a huge choice of proprietary solutions available; and there are a smaller number of open standards of which TETRA is one...



### And just what do you want to do with the system ?

Identifying the key requirements will quickly derive a technology short-list

4

- Spectrum
- Coverage & capacity
- Security
- Interoperability
- Resilience
- Set-to-set operation (direct mode)
- Multi-vendor
- Voice requirements
- Data requirements
- Support control room applications [GIS, CAD, Dispatch]

Open procurement procedures will quickly help achieve a technology shortlist; and there will be vendor choice & competition for open standards.





# ETSI is one of the leading standards bodies developing open industry standards –

What's in the ETSI digital radio tool kit?





### ETSI has three Digital Trunked Radio Standards...

- TETRA
- GSM and its variants
  - GSM Push-to-Talk
  - GSM-R
- DMR
- Each of these standards started life with:
  - Specific target markets
  - Specific user requirements to meet
- And they all have very motivated user groups...
- <u>But</u> there is a degree of cross-over between the standards and this has led to 'competition'.

TETRA has been defined by ETSI to meet the needs of the most demanding Professional Mobile Radio users









- DMR comes in three flavours and is seen as a digital replacement for • MPT1327 for 'business critical' rather than 'mission critical' users...
- Tier I
  - Peer-to-Peer mode
  - Intended for 446MHz, unlicensed operation
- Tier II
  - Operation through a base station or repeater
  - Peer-to-Peer mode
  - Generally for operation with licensed spectrum in VHF & UHF
- Tier III •
  - A trunked radio network plus functions of Tier I & II
  - No suppliers have been identified yet...
- Vocoder standardisation is not currently in the plans this may lead to interoperability issues.





- There has been a significant and well documented lobby over the years to champion GSM as a credible alternative to TETRA for national public safety solutions
- And work undertaken to prove and disprove that one technology is better than the other...
- But there is a real place for public cellular networks alongside mission critical PMR systems such as TETRA – more later !
- Firstly, there is a key area where TETRA and GSM based technologies do, and will continue to, compete Railways...
- TETRA has had significant success with urban transportation projects buses, metro systems and light rail
- GSM-R, the GSM technology derivative for the railways, is the leading standard for national railway systems

# GSM-R remains the technology leader in the Railway industry





GSM-R focuses on safety, reliability, prevention of accidents, and emergency communication solely in the specific, and very specialised, domain of the Rail Industry

- GSM-R was developed specifically for the rail market following a decision in Europe back in 1993 to agree the correct solution for European railways TETRA came second...
- A GSM-R network is a private network
  - separate infrastructure
  - separate base stations
  - can be integrated with public networks
- GSM-R has has success across Europe, Asia and Africa. And there is currently significant interest in Australia and a feasibility study being conducted in the USA.
  - The key battleground between TETRA and GSM-R is in Asia
    - 20 of China's 31 provinces have GSM-R
    - The Tibet-Qinghai high-speed line is GSM-R
    - And GSM-R has been chosen in West Bengal, India
- But TETRA is also present, the Taiwan high speed line being an example of utilising this technical solution.



### Key elements of GSM-R

- GSM-R Implementation:
  - employs the same basic network components as GSM but with additional functionality (e.g. Advanced Speech Call Items (ASCI))
  - 99.95% availability for all hardware elements and significant in-built redundancy into both equipment and planning
  - PMR type voice calls
  - Data
    - SMS communication with dispatcher & driver
    - Automatic train control ETCS
    - Information services
  - Cell Broadcasting
    - Data communications targeted at specific cells





# So what role can Public Cellular networks play in supporting Mission Critical Communications ?





### Certainly Public Networks alone are not the answer...

• A number of White Papers have been written over the past few years looking at GSM as a solution for mission critical mobile communications





- Features and functionality aside, nearly all have concluded that during disasters and major incidents:
  - Public Mobile Networks struggle to cope
    ... and often fail
  - Infrastructure may be critically damaged, at best limiting service
  - It is extremely difficult, and often impractical, to prioritise calls to guarantee access to specific user types
  - Interoperability necessary between public safety agencies cannot rely on public networks

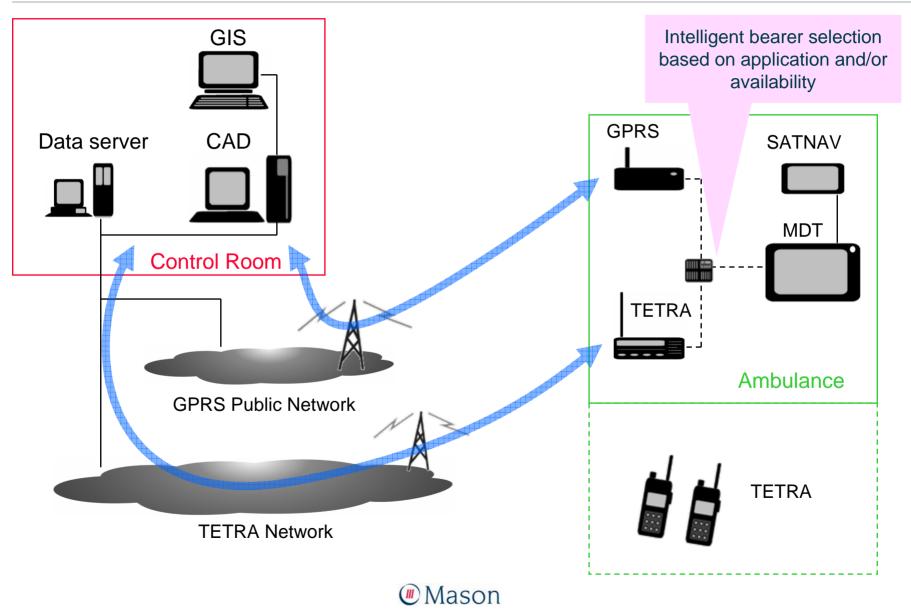
Public Network Technologies have a number of key shortcomings for voice communication...



- Call set-up times are not acceptable for mission critical communication
- Cellular Push-to-Talk systems require too many channels to support reasonably sized talkgroups
- Out-of-network set-to-set coverage is an issue
- The ability to support any level of reasonable dispatch functionality is an issue

Public cellular systems are not able to provide mission critical voice communications: they may have a role for data communications though...

So what role can Public Networks and Other Technologies play ?




To help answer this question, the following are examples from the Ambulance Service in the UK.....





#### A typical multi-bearer application





#### Data use for the Worlds Largest Ambulance Service

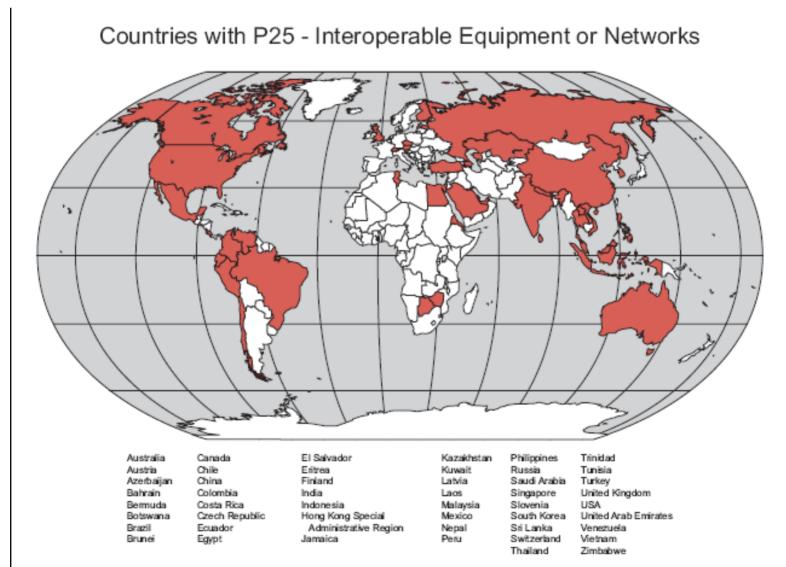
- London Ambulance 1.5million patients every year
- Seamless network switching ensures data transmission in real time regardless of coverage issues and congestion
- Multiple Wireless Wide Area Networks and Wireless Local Area Network
- On station ambulance sits within an 802.11b WLAN environment
- In the mobile environment has available 2 networks supporting GPRS (packet data) and GSM (circuit switched) – with TETRA soon to be implemented as a third network.



Data has been recognised as being significantly more efficient than voice based radio communications – but voice remains an essential service






### Thinking back to the original technology list, P25 is the remaining open standard that potentially matches the capabilities of TETRA.

How do TETRA and P25 compare ?



# P25 – 600+ networks in 54 countries across all Continents







#### TETRA – 1000+ contracts in 88 countries



Africa 28 Confidential 3 Algeria 6 Congo 1 Kenya 1 Libya 4 Morocco 1 Nigeria 4 South Africa 6 Sudan 1 Tunisia 1



Asia Pacific 94 Azerbaijan 1 Brunei 1 China (incl HK) 43 Confidential 3 East Timor 1 Georgia 1 India 3 Indonesia 1 Kazakhstan 8 Malaysia 1 Singapore 6 South Korea 14 Taiwan 5 Thailand 2 Turkmenistan 3 Vietnam 1

#### Scandinavia 50 Confidential 1 Denmark 8 Finland 20 Iceland 5 Norway 6 Sweden 10



South Europe 105 Andorra 1 Gibraltar 3 Greece 11 Italy 21 Malta 1 Portugal 10 Spain 58



Latin America 36 Argentina 3 Brazil 3 Chile 1 Confidential 2 Curacao 1 Ecuador 1 Haiti 1 Mexico 9 Panama 1 Peru 1 Trinidad 1 Venezuela 12



Macedonia 1 Poland 14 Romania 1 Russia 46 Slovakia 1 Slovenia 5



Middle East 42 Egypt 2 Iran 4 Irag 4 Israel 1 Kingdom of Bahrain 1 Kuwait 1 Lebanon 2 Oman 4 Qatar 3 Libya 3 Saudi Arabia 5 Syria 1 Turkey 1 UAE 10



West Europe 323 Austria 8 Belgium 9 Confidential 1 France 58 Germany 32 Ireland 2 Luxemburg 1 Netherlands 49 Switzerland 13 UK 150

(III) Mason



#### Which Standard – TETRA or P25 ?

- Feature rich, secure and scalable
- Provide enhanced functionality with equipment and capabilities focussed on Public Safety needs
- Improve spectrum efficiency
- Allow effective, efficient, and reliable intra-agency and interagency communications
- Ensure competition amongst multiple vendors through Open Systems Architecture



#### Some background to P25

P25 is seen as a standard to provide coverage rather than capacity as well as backwards compatibility...

- Provides a migration path from Analogue to Digital
- Multi-vendor market prices are dropping [the same happened in TETRA...]
- Offers a mix of solutions [trunked, conventional, simulcast, etc)
- Supports secure communications from radio terminal to dispatch
- FDMA does not have same distance constraints as TDMA in relation to synchronisation TETRA has a constraint of 56km
- As is the case in TETRA, there are mandatory functions that must be included; options in the standard that suppliers can choose whether to design into their solutions; and there a remains the option for manufacturer specific features to be offered
- As is the case with TETRA, IP technology is underpinning P25 bearer networks improving network resilience and flexibility
   Mason

#### High Level Comparison...





- Supports a range of user groups, including public safety, urban transport, and rail. And also provides a good platform for PAMR service offerings
- Build from scratch and don't expect to be able to use <u>any</u> elements of current mobile radio systems *Revolution* !
- The standard has options for different configurations
- Mature multi-vendor environment
- Generally in UHF bands



- Public safety focus but would suit needs of other 'orange light' groups and utilities
- Has been written with a clear migration path from analogue radio systems through to digital radio systems to the fore – *Evolution* !
- Can be conventional, simulcast, or trunked – a range of options to suit a variety of user needs all under the one air interface.
- Multi-vendor environment continues towards maturity
- Available in VHF and UHF bands
  Mason

Both standards support similar voice functionality – the differences are elsewhere...





- Protected 7.2kbit/s data channel using single timeslot – multi-slot will help increase this to 28.8kbit/s max.
- Good telephony functionality
- Over the air encryption as standard
- TETRA subscriber products are world-class in their design
- Has developed some excellent data centric products with TETRA PDAs, very accurate location systems, etc.



- Protected 9.6kbit/s data channel
- Telephony functionality will be available
- End-to-end encryption as standard
- Subscriber equipment remains large and clumsy in comparison to TETRA
- Behind in terms of integrated applications across subscriber equipments (GPS, handheld functionality)



Looking ahead...

- As with TETRA, P25 as a standard is developed by consensus and steering committee. It has taken time for TETRA2 to achieve agreement of the technical specifications; P25 is no different.
- Similarly P25 is developing in phases the second phase of the standard is close to reaching agreement although work continues in two key areas, modulation and data rate.
- Both standards are looking to achieving significantly higher data throughput rates than the initial implementations – P25 through what is termed High Performance Data
- P25 will improve its current spectrum efficiency in Phase 2 using TDMA to support two timeslots in a 12.5kHz channel – but P25 systems must still be able to support FDMA transmissions [dual mode transmission sites] termed dynamic dual mode operation



#### In Summary – what are TETRA's strengths ?

- TETRA is certainly more frequency efficient than other technologies but is highly likely to require more base station sites to achieve similar coverage requirements (handheld or mobile)
- TETRA has shown the way to manage an open standard through interoperability certification
- The vast majority of TETRA networks have a mix of supplier equipments; few, if any, P25 networks are currently multi-vendor
- Competition has enabled rapid progress in the development of subscriber equipment, handportables and accessories in particular
- TETRA has available very competitively priced subscriber equipment in fact pricing may have been driven down too low in some markets
- The TETRA Association has worked closely across the industry to ensure that standards work has flowed smoothly and reduced time to market



### In Summary – What could TETRA learn ?

#### Multi-mode Operation

P25 has much of its success from supporting multi-mode platforms – TETRA must ensure that future technologies can springboard from the current TETRA implementations

Evolution not Revolution !

Network/Technology Convergence

No one technology can be best at doing everything – TETRA solutions need to clearly show how future technologies can work alongside TETRA to provide yet stronger feature sets

• Work with Competing Standards

All of the major mobile radio manufacturers have products spanning not only a number of open standards but also offering proprietary solutions... for many it is the same core 'engine' just a different Air Interface.





27

Duncan Swan Associate Director Mason Communications Telephone: +44 207 061 3700 E-mail: duncan.swan@mason.biz